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* Chapter 1

| INTRODUCTION
I

The electromagnetic scattering from a subclass of superquadric surfaces,

I specifically two-dimensional, perfectly conducting supereiliptic cylinders is

treated. Scattering may be defined as the modification of the electromag-

netic radiation fields due to the presence of complex geometries.

Computer modeling is an active area of high-frequency electromagnetic

research. It concerns itself with the construction of efficient computer pro-

grams to calculate values for the various antenna and radar cross-section

parameters of complex antennas and scatterers. Some of these computer

codes [141,[15] are capable of modeling quite complicated antennas and scat-

terers such as reflectors, ships, aircraft, spacecraft and many other actual

structures.

The purpose of this report is to extend the scope of computer modeling

codes to include superquadric shapes in order to represent complex geome-

tries by a new class of analytic functions. Superquadrics show great promise

I of providing researchers and engineers with a powerful family of parametric

shapes for geometrical modeling. One of the main problem areas today in

I
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modeling is the lack of R unified mathematical formalism and specification

language for geometrical objects. By providing modelers with the fL .;lity to

generate a wide variety of shapes from a small number of intuitive parame-

ters, superquadrics may prove to be a step in the right direction toward the

needed mathematical basis. Since superquadrics allow complex surfaces to 3
be generated and modified easily and interactively, there is also hope that

they would integrate naturally with an evolving specification language for 3
geometrical objects.

This report, then, represents a small step in examining the potential of

these surfaces for this purpose.
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Chapter 2

THEORETICAL
BACKGROUND

2.1 Introduction

The solutions of electromagnetic problems consist of solutions to Maxwell's

equations and the equation of continuity, together with appropriate bound-

ary conditions. There are three high-frequency techniques of particular

interest here, Physical Optics (PO), Geometrical Optics (GO) and the Uni-

form (Geometrical) Theory of Diffraction (UTD).

2.2 Geometrical Optics (GO)

Geometrical Optics is an approximate technique tha' can be used to rep-

resent radiated, reflected, and refracted fields. GO can be derived via an

asymptotic series (Luneburg-Kline) solution of the Maxwell's equations; the

leading term of the series is the GO field.

The GO field is discontinuous across a shadow boundary. Its amplitude

is governed by the conservation of energy in a ray tube as it travels along

3
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the ray path. The phase is proportional to the length of the ray path, and

ray tubes are defined by surfaces normal to the ray path through which the

flow of power is a constant. GO fails when the energy of a ray tube must

pass through a point or line. Such points and lines are called caustics, aad

they signal the attempt by GO to represent the flow of a finite amoant of U
power through a vanishing area. In two dimensions, the GO reflected field

is I
r(r -E.(Q) - (2.1)= +A.(Q,) (p? + 8?)e h

H +(r-") ' - -"' (2.21

where 3
Q, = reflection point

E,(Q,) = incident E. field at Q,

H,(Q,) = incident H. field at Q,

a' = distance from Q, to source

s" = distance from Q, to receiver I
p r-= caustic distance for the reflected ray

1 1 2

po p, &(Q,) cos90
1 caustic distance for the incident ray I

Pi

#' = angle of incidence = cos-1 (-j' -A)

RP(Q,) = principal radius of surface curvature at Q,.

n = normal to the surface at Q, 3
t = tangent to the surface at Q,I

4 I
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direction of the incident ray

i" = direction of the reflected ray

i = = direction of the source

f = direction of the receiver

as can be seen in Figure 2.1. The direction of the reflected ray is defined

Y axis /

To Receiver r

1 1
L r To Source

X axis

A

Figure 2.1: Geometry for the GO Reflected Field
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by the law of reflection and is 3
,i. j" = -ii n h'. (2.3)

The point of reflection, Q,, is a point on the surface such that the law of

reflection is satisfied. For far field scattering from Q,, fi • i = h. . 3
2.3 The Physical Optics Procedure (PO)

The currents induced on a general scatterer are unknown. If the true cur-

rents were known, then exact field values could be c:dculated using the

radiation integrals [9]. Physical Optics is a procedure where unknown cur-

rents are approximated by equivalent currents based on the incident 0.O.

fields. The equivalence theorem allows replacement of the original scatter-

ing geometry and the actual surface currents by cjuivalent surface currents

flowing in free space. These approximate G.O. currents are then used to

calculate the scattered fields. The currents induced on the surface of a

perfect electric conductor arz assumed to be

{2fi x H', in the Lit region
in the Shadow region (2.4)

where ft is the unit normal to the surface.

Physical Optics is useful because the form of the assumed currents is 3
simple and the resulting integrals lend themselves to either numerical or

asymptotic (high-frequency) analysis. It is not possible to rigorously state I
the conditions of validity of PO, but several guidelines may be employed

when determining its validity in a given problem. In general, whenever the I
assumed currents are not a good approximation to the actual currents then

6 I
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PO will be invalid somewhere. For example, in a bistatic scattering con-

figuration where currents in a shadow region contribute significantly to the

total field, the physical optics approximation is no longer accurate. Another

source of error in the PO formulation is the assumed termination of G.O.

currents on the scatterer surface. Since the actual equivalent currents do

not end abruptly, evaluation of the PO integral yields contributions from

I the endpoints of integration which are nonphysical. When these spurious

current termination contributions can be identified and removed, the PO

result becomes more accurate. Care must be exercised however when de-

termining whether a term is a false current termination or the result of a

bona-fide discontinuity with physical causes.

When PO is a good approximation, and if the stationary phase condition

is applicable, then a recovery of the GO result is possible from PO. Because

PO is a spatial integration of surface fields, it produces bounded results in

situations where the conditions required for a valid GO result do not hold.

3 This ability of PO to treat scattering not possible with GO suggests that it

represents a viable and useful format for many problems. This is the main

reason that PO was chosen to characterize the scattering from superquadric

surfaces.I
2.4 Uniform Theory of Diffraction (UTD)

I The Uniform Theory of Diffraction 110] is a uniform version of the Geomet-

rical Theory of Diffraction. The GTD is an extension of Geometrical Optics

that postulates the existence of "diffracted rays". Recall that the GO field is

I
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discontinuous. Since actual fields must be continuous, then diffracted fields I
are generated that eliminate this discontinuity. These diffracted fields are

added to the GO fields, i.e., Ustd = Us, + Ud.. The postulates of GTD are

very similar to those of GO.

1) The ray paths may be found as a generalization of Fermat's principle- I
diffraction points occur at places such that the total ray path is an

extremum.

2) Diffraction like reflection and transmission is a local phenomenon at

high frequencies.

3) For a diffracted ray, power is conserved in a tube of rays and the phase

of the diffracted field is proportional to the length of the traversed

ray.

Generally, a UTD solution is: I
" accurate

"* valid at reflection and shadow boundaries and in the shadow region

"• valid for an incident ray optical field with arbitrary wavefront curva-

ture I

"* computationally efficient.

8 I
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Chapter 3

SUPERQUADRIC
SURFACES AND THEIR
PROPERTIES

Superquadric surfaces are generalizations of the quadric surfaces. The def-

inition of a quadric surface is the locus of all points (r,y, z) that satisfy the

equation

Ax2 + By 2 + Cz D +Dxy+Ezz+Fyz+Gz+ Hy+Jz+K=O (3.1)

for arbitrary constants A, B, C, D, E, F, G, H, J and K. In two dimensions,

Equation 3.1 is

SAz 2 + By2 + Dzy + Gz + Hy + K =0. (3.2)

Examples of quadric surfaces include the ellipsoid, the hyperboloid of one

sheet, the hyperboloid of two sheets, the elliptic paraboloid, the hyperbolic

paraboloid, the elliptic cone, and the quadric cylinder. Superquadrics do

not satisfy Equations 3.1 and 3.2 except for certain special cases. For our

9
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purpose, we restrict our attention to closed superelliptic and superellip-

soidal surfaces.

The transition from quadrics to superquadrics is accomplished by al-

lowing the exponential powers of x, y and z in Equation 3.1 to take on

arbitrary values. The difficulty of raising negative numbers to fractional 3
powers is resolved through the careful application of absolute value signs

and sign functions. The proper combination of absolute value signs and

sign functions ensures that a closed quadric surface generalizes to a closed

superquadric.

To illustrate, consider the equation of a quadric ellipsoid in rectangular

coordinates that meets the x, y and z axes at ±a, ±b and ±c. I

It is useful to write the surface equations in parametric form so that u and

v are the principal directions of the surface. The position vector is then

r = ia.sinu cosv +b.sinu sinv + ic, cosu (3.4) 1
where 3

0 < u < 7r and 0 < v < 21r. (3.5)

A normal to the surface is given by I

asinu cov + sinusinv + -. cosu. (3.6)
a b c

Generalizing the quadratic exponent in Equation 3.3 and taking note of 3
the proper absolute values, we obtain the equation for a superellipsoid in

I
10
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rectangular coordinates,

+ + = 1(3.7)

for which the components in parametric form are

s = a. oinuj(3". Icos l(2/1,)sign [sinu coo v

y = b. Isinul(/1). Jsinvl(2/1) -sign [sin u sinv]

z = c. II cosul. (3.8)

I Note that in three dimensions the superellipsoid can have two different

"("squareness" parameters vi and v2 applied to the principal directions u

and v. Note also that the sign[] function restores the proper sign removed

by the absolute value operators. For brevity, the use of absolute values is

dropped in presenting the normal to the surface of the superellipsoid,
U|2"2,YC(sin 1 ,, U)2-3/,1 Vsn,)2-2/"' + Z (COS U,)22-2/.

n = -(sinu)+(sn"i(cosn)2-/Ii +
a b c
* (3.9)

Equations 3.8 and 3.9 along with similar expressions for superhyperboloids

* are presented in [2].

A second parametric form for the surface vector r(u,v) which satisfies

a quasi-superelliptic equation

* ~ +~ =1(3.10)

similar to Equation 3.7 is given by

I[(coo.k)"' + (sin0)' ) ((cos W)"• + (sin•)I))Jl/u +

11
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b . sinO& (sin•)p)("/) +
± ((coso)" + (sinO)') ((cos jp)' + (sin )')]1/v1 I

Z^ ~c. Cos V(-1

[(cos o)V2 + (sinpS),]l/,,, (3.11)

where • and •' are used in place of u and v to indicate the alternate pa-

rameterization. This equation does not generate the same class of surfaces

as Equation 3.7, but it is presented here as yet another generalization of

Equation 3.1 with possible value in surface modelling. For two-dimensional

curves generated in the x-y plane, they are equivalent.

3.1 The 2-D Superquadric Cylinder

In this section the equations related to the superquadric cylinder are given.

The two-dimensional equation for the surface of the superquadric cylinder i
shown in Figure 3.1 is

.f(x , Y) = .(3.12)

As a parametric function of t where -1 < t < +1, the surface may be

written as I
) X(t)r + Y(i)jl (3.13)

where

X(t) = ±4(1 - Itl")'h/, Y(t) = bt. (3.14)

The normal and tangent vectors to such a surface are

Vf ibv •x -) sign (X) + ± a•" Y(-l).sign (Y)
I'(X, Y) -ib2, I 2l'- + Iti'-' (3.15)I

I
' 12
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I~ ~ Y(tM/ \

a 9

Ii a -- X(t) -•

I
b b

Figure 3.1: Various superellipses of v = 2, 3,10.I
Si(X,Y) = x , = -iav lYt('-') " sign (Y) + j+b" IYI'--)') sign (X) (3.16)

i(XY) V' x2 ' + a2~ Y 2 '
so that

r"t) = ±ia(1 - lilt)1/v + Aby (3.17)

and

AM -- b(1 - 1/&') It I("•l-) sign (L) (3.18)
/b2(l - ItI")2(11/lv) + a2 l,!2(v-')

I
13
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Using the first angular parameterization,

sign (cosv)/+) . I 2in sign(sinv) (3.19)

= bi Icos V(2-2/) • sign (cos v) + a± lain VI(I-2/.) • sign (sin v) (3.20)

V/b2 Icos vi2(-2/siv) + a2 lainvt2(2-/s)

Note that the parameter v is not the same as the angle 4, seen in Figure

3.1. The connection between the angle 4) and parameter v is

= arctan tan 4,)(-/2)1(.)1

In the second angular pararneterization, the relation between •' and 4,

= arctan [t tan )] (3.23)

and

I/b'tcost/,I2(v-1) + a2 Isin,•lI"-•
For a plane parametric curve of the form of Equation 3.13, the radius

of curvature is given by

S[Ix,(t)12 + IYI(,)j]2]' I•
- Y'(t)x"(aI (3.27)

14
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Thus the radius of curvature for the superquadric cylinder is

(ahU sin 0 U- 2 + b2v cos o02P-2)(3/3)

= (v, - 1) (ab)( 1-)(cos sinq)(,2)((a sin 0)' + (bcoso )')(I+1/)
(3.28)

and

(a2 sin Ik-2 + b2 cos ,k,- 2 )(3/2)
= ab (v - 1) (coso 0sin ,)(" 2-)(sin,"' + cos o,")(1+1/,) (3.29)

Note that if v equals anything other than exactly 2, the denominator of

I Equation 3.29 vanishes at 0$ = nr/2, n = 0, ±1, 2. Equation 3.29 is

plotted in Figure 3.2. This is equivalent to a local zero in the curvature at

I the poles of the cylinder. The zero in curvature produces a "cusp" behavior

at the poles seen in Figure 3.3. This cusp in curvature is the source of the

singularity when using GO to calculate the reflected fields.

I
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Chapter 4

GO AND PO SCATTERED I
FIELDS

This chapter presents the GO and PO formulations for the scattered fields

from a superelliptic cylinder. By applying UTD concepts, the total scatter-

ing from the superellipse is seen to be composed of several mechanisms. As

a minimum these include a reflected ray and a creeping wave around the

back. Since the mechanism of interest here is the reflected ray, the other

possible mechanisms are left as suggestions for further investigation. I

4.1 The GO Reflected Field

For the superellipse geometry shown in Figure 2.1, the relevant parameters 3
are

,= arctan(btan ( 0+o), sign [tan (i)) (4.1) I
Q, = ab (i cos 0 + sin 01 (4.2) 3

(0asin r1' + lbcoo !')"
E'(Q,) = Eoe-jha' (4.3)

18 I
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IH.(Q,) = 0210-2 (4.4)
(ab)(1-)4 (av sin +'- ± b2' cos 4 , 2-2)(3/2)

,z(Q,.) T- 1) (cos 0 sin 0)(11-2)((a sin 0)' + (b cos 0,)')(l+ 1/) (4.5)

p, = 1J(Q,.)cos8' (4.6)

ft iV cos 4"- 1 . sign (cos 4) + go" Isin 0•4-' • sign (sin 47)

V'b2l Icos 01l2('-') + a 2v Isin 01l2(v-) 1)

ab cos 9

(ja sin 01' + lb cos 0h)"/' (4.8)

ab cos 8'
p (Ia sin 01' + ibcos 40,1I' (4.9)

P i cos 8' + sin 0' (4.10)

= cos0+ sin0 (4.11)

ii =(4.12)

Sr =(4.13)

The far-field GO solution for H'(r- is therefore

S-jk(r'+r) jk2co.U,
=( or e (4.14)

with 4,, R1(4) and 81 given by Equations 4.1, 4.5 and 2.3. As is clear from

the form of 14 (Equation 4.5, Figure 3.2), the solution produces infinite

fields at the zero-curvature points of the superellipse. This is clearly a

failure of GO. The full nature and reason for the failure is not clear from

Equation 4.14, but becomes evident from Figure 3.2 when -0 = (0, nwr/2).

19
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4.2 The PO Scattered Field

For an arbitrary 2-D surface, the PO formulation for the TE scattered field

HT is -jlc I ( I

where 
H

p = Distance from the origin to the field point

i= i coso + sinO 3
= 2h x Fl(I

.•r-. =-jO.) iejik(zcoae'+&IinG')

d = Line integration element, 3
as shown in Figure 4.1. Let the variable of integration be the parameter t.

Then I

r(t) = ia(1 - jilj)'I" + ýbi (4.16)

F. = a(1 - I tI)1/' cos0 + btsin (4.17)

-)a - lt!C'-• sign (t) + ýb(1 - (4.18)

)- b2(1 I- )l-1/v) + a ' (4.1-)

(r x h = 2Hý(r-)(fi x i) x i = -2H'(r(i x i) (4.19)

= 2iejh(wcoo O'+V ii0') x (4.20)

asin tl('-')sign t + bcos0(1 - I-1/) (4.21)

b2(1 it )2(-l ) + a 2  (-)

dt - ltl2(v-l) + b2 (1-It a)21-/l)dt. (4.22) 1
(1 _ -

20

I
I



I
I
I

Y axis

I .FIELD POINT

* ~ H'1 6'

X axis
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Figure 4.1: Geometry for the PO Scattered Field from the Superellipse

The PO integral for the scattered H, field is then

.1 +p f +asin0-It'-$/-sIsip +bcosl x
H V 7* -v 1(1 jLi[ (1/- +

xej(,( - Itj)'(co@ 6+co.e')+ (.sin •9+.no')) dt (4.23)

which may also be written as

I
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- [a sine ((1 -
- b � 8] eJk(a(1t"�cose+coEe'�6tui�e+ain9')

± [asin8 ((1 - ti(1/14) + bcosB] ejk(a(It�)1IY(c�e+cogI)+bt(ujn9+sin9I)) 

3

} cU. 
(4.24) 

1
I
I
I
I
I
I
I
I
U
I
I
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! Chapter 5
i HIGH FREQUENCY

i ASYMPTOTIC
EVALUATION OF THE P0

'i INTEGRAL

I
| 5.1 Introduction

The Method of Steepest Descents is a general procedure for obtaining ap-

I proximations to integrals with a large parameter k of the form

I(k) = f f(Z) e()dz. (5.1)

The key to the approximation is that significant contributions to the inte-

gral will arise only trom those parts of the path P that are local maxima

(saddle points) of Re{q(z)} and the endpoints of P. Contributions from

the rest of the path will be exponentially smaller and may be neglected.

The theory of steepest descent analysis is well developed and fully treated

in [3,6].

I
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A related method, the Method of Stationary Phase is applicable to

integrals of the form

1(k) = 02 f (z) ejkez dr (5.2)1

where again k is the large parameter. The method of stationary phase is

based on the principle that rapidly fluctuating oscillatory functions tend to

cancel under integration. Significant contributions to the integral will arise

where there is a "stationary" point or a local cessation of oscillation. Note

that while Equation 5.2 is a special case of Equation 5.1, the Method of I
Stationary Phase is not a special case of the Method of Steepest Descents.

This is true because the contours of integration and the analyticity require- I
ments are not the same for the two methods. Both methods yield the same

result for the leading asymptotic term if the contour of one is continuously

deformable into the contour of the other without encountering any singu-

larities or branch points. A good discussion of the stationary phase method

is found in [3,111. 1
5.2 Topology of the PO Integral

Although Equation 5.3 is a stationary phase integral, it will be evaluated

by the method of steepest descents. The first step of an SDP analysis

is to examine the structure of the integrand in the z-plane. Writing the

stationary phase integral 4.24 in the form of Equation 5.1,

H. ~ )(5.3)1

24 I
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3 where

I(k) = 11(k) + 12(k) = f1 (z)ek•,'b) dz + ]f(z)ekg,,() dz (5.4)

and

f,(z) = -asin 1 z + bcos0 (5.5)

f,(z) = +asinO Z')I/v) +bcosO (5.6)

3 q1(z) = j (a(1 -z') /(cosO+cos0')-bz(sinO+sin0')) (5.7)

q2 (z) = j (a(1 - zv)l/'(cosO+cos0') +bz(sinO+sinO')). (5.8)

The structure of the integrands in Equation 5.4 is shown in Figure 5.1. The

original contour of integration is along the positive real axis from 0 to 1.

The functions q%.(z) have branch points at the v roots of unity located at

IeK ia n = 0,±-1,±2-... v. (5.9)

I The associated branch cuts follow the contours of Re{q(z)} = 0 so that

subsequent contour deformations remain on the same Riemann sheet. In

order to select the proper canonical integral, the behavior of q(z) near the

origin is of interest. The origin, in the z-plane, is where the multiple saddle

points are situated. In the neighborhood of the origin,

3 ( j (a(cose+cose') (1i- ') F bz (sin0 + sin 0')). (5.10)

3 For both 11 and 12, there will be (v - 1) saddle points (Z,,, for I and z,,,

for 12, j=1,2,3 ... v - 1) that coalesce on the endpoint of integration at

3 the origin. This is the primary contribution to the integral. The physical

25
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Figure 5.1: z-plane structure of q for v' 6.

meaning of the endpoint of P at z = 1 is a contribution due to the false

termination currents of the P0 approximation, and its effect on 1(k) will

be ignored by deformning the original contour away from this point into the

valley region shown in Figure 5.1.
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5.3 Backscattered Field from the Curvature
Cusp (the Pole)

i For the special cre of backscatter from the pole (8 = 0' = 0), Equations

3 5.3 through 5.8 simplify to

1 I(k) = 21 1(k) = 212(k) =2 fo(z)e"'%o()dz (5.11)

f 0(z) = b (5.12)

%q(z) = j2a(1 - z")'/". (5.13)

It is desired to approximate the structure of 5.13 near the saddle point

zI = 0 with a simplified exponential structure which can be integrated in

closed form. In the neighborhood of the origin,

q. ( z) 2j a( I i-)(.4

For a transformation scheme, we have

I(k) 2j f,(z)ekqo(z) dz = 2bI eak2a(1z')"' dz (5.15)

21j G,(s)ek-() ds 2bejk2a Ta-dz e-At d05.16)

where

G. G(a) f= dz (5.17)

%q)(z) () = q(z.)- = ij2a - a. (5.18)

Equation 5.18 defines the transformation from the z-plane to the s-plane.

The deformation of the contour from the upper limit of 1 in the z-plane

to co in the s-plane is justified on physical grounds. It causes the PO

27I
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termination currents to be excluded from the approximation. Expanding

Equation 5.18 in a power series about z, = 0,

q.')(z,) = -2ja(v - 1)! (5.19) -

da = e' -[()'z.) (5.20)

e= e- (5.21)[2jaJ

where the choice of n = 0, 1,2 ... (v - 1) is determined by the path leading

away from z,. From Figure 5.1 the appropriate choice for the arg of the I
steepest descent path is

(dzr
arg -s 10=0_ 2v (5.22)

hence n = 0. The canonical integral used in Equation 5.15 is given in terms

of the gamma function and is

0e-C'" ds r - ) (5.23)

The resulting expression for l(k) is

1(k) 2[ ' f(z.)ekqe-('z)L()) (5.24
-

2b2r (1) [ a -/J . (5.25)

The reflected field from the pole of a superellipse (8 = 0' = 0) given by i
Equation 5.3 becomes

B 2 'k 2r 1' W (5.26)
FiV 7V kV t2kaJ VP
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When v = 2, the superellipse becomes a regular ellipse and Equation

5.26 reduces to = b2 e-• 16 jh2.

H: -_ _ (5.27)I2
which is the well-known result for the backscattered field from a 2-D elliptic

cylinder. When v -- 0o, the superellipse becomes a box centered at the

origin with width 2b and depth 2a. In this case, Equation 5.26 reduces to

- jkp a
H- = 2b ' k - (5.28)

which agrees with the PO result for the broadside backscatter from a strip

of width 2b displaced along the x-axis by a. While the analysis is carried

out for integer values of v, comparison with numerical results shows that

Equation 5.26 remains valid for all real values of v between 2 and oo.

I
I
I
I
I
I
I
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5.4 Reflected Field Near and Far from the
Pole for v--3

The analysis for the case when v = 3 is based on the asymptotic expansion I
found in [7] which describes the arbitrary configuration of two simple saddle

points situated near an integration end point. To find the saddle points we

set the derivative of Equation 5.10 equal to zero. Then,

d = ( (-a~cose + cos (1 - F2/3 b(sine + sin0') 0

(5.29) I
or for 1,,

r[( z' 2] b(sinO + sinO') (5.30) I
-z.3)1/3= a(cos6 + cos0')

and for 1z, [ z. ]'s=n0±(5.31)Z' 2 b (sin 0 + sin 9')

[(1 -z.3)1/3j (cos0 + cos 0,) (5.31)

so that the saddle points for I, are located at I
j [a cos [3/2+ -- b s-i n (,•+0,)1] 1/3 (5.32)

__ __ __ __ __ __ __ __ __ __-

and those for 12 are located atI
= ± ~~~c [bsin 2,(~Q]/J13 (.3

zLacos [bsi) 3/ I2 ,3/21 (5.34)
( I- [bsin ('e)1 ]i

"222 - + [bsin_ (IO)]13/2 1__/3_ _ (5_35) I
L2 a cos ("J)3/2±+ [b sin (?)1f (5/35

30 I



The asymmetry in the saddle point locations would cause great complica-

tions in the analysis. For relatively small values of (8 + 0')/2, however, the

saddle points may be approximated by

b [ sin (04 )13/2 1
Z [i ( .1 )]./2 [sn. (5.36)

z,, +j Iz01 (5.37)

ZI -- J Iz (5.38)

z 21 -- -za1 (5.39)

z" +IZ.4. (5.40)

For larger 0, 0', the saddle points are widely separated and the inaccuracy

of the above assumption diminishes exponentially. Because of symmetry of

Equations 5.37 through 5.40, the following relations hold true.

Mf(zii) = f1(z 12 ) - f 2(z2 i) f2 (z22 ) (5.41)

= bcosO+asinO (( (5.42)

q;'(z 21 ) = -q;'(z 22 )= jq"'(z,) = -jq'r(z 1 2 ) (5.43)

= 2ja(cosO+cos0') ((lZ1al(5/s)) (5.44)

I The integrals I, and 12 are treated separately, though the strategy of anal-

ysis is the same for both. If

I(I) M . f,(z)eh r(z)dz = ] G,(s)ekr(&) da r = 1,2 (5.45)

I where the functions q,(z) have two first-order saddle points at z,., , then

the asymptotic expansion of I,(k) valid uniformly as z,, -. --* z,. and
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ask - 0 oo is given [7] by 2

l,(k) -, rjI[H(.~i)+± H,(s,2 )] k-~.~-G-t(s, ,. 1, , ,.,,)
eha°i

±Ik ,/3-a,) G'.i(agrk 2 , k' 3 8ra)
+2  /7eh 2 k2/3 --1 13[H'.(rt)- H r(8..) ( 1 s, )Ht,. 2 )]

eH,,(a +,r..)H.Sl 1)H(2

( r = 1,2 (5.46)

where the transformation from the z-plane to the s-plane is8' 3
qr(z) = T,(s) = a,. + ?lir - (5.47)

qv(z,.) = T,(sa) (5.48)

a.. = ![q,(zl)+qr(z 2)] (5.49)

=[(qr(ZI)-qr(Z-1))j 9,3 =-3,2 (.0

and I
IaI,(a) = f d(z)- 

(5.51)
cia

dz f:2A,.r
"da ,, q"(z7 1-- ) h, 1,,2  (5.52)

dz~ - q- ( ,o (5.53)

G,,(e,3) e 2 j eO- 3 //dt (5.54)

= ,,(ý,,8) (5.55)G'd4,• - - I

The function Gi is expressible in terms of the Incomplete Airy Functions

given in Appendix A. To apply this approximation to I,, the proper branch I
of fr-1 must be selected. This means first choosing m such that
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Figure 5.2: Map of Re[q,.,(z)] for z1I = Z12= z.

I, -2 t_ ,, 3 m = 0, +1, ±2 (5.56)

agrees with the arg of the SDP of Figure 5,2. The indicated choice is m = 0I so that arg(hil)l,=, must equal -1. This then determines the choice of

branch for Vi since it must be consistent with Equation 5.52. Then

_-h,, ql) eji+jz n=; 0.0±1, ±2 (5.57)
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so that =

e- e . (5.58)

This equation is satisfied for n = 2 so that
1/2 1 /2 +jaJ

, = I 1/2e1iz (5.59) I
771 = (5.60)

"h,, = h1 2 = 2•/- e'-. (5.61)I

From Equations 5.37, 5.38 and 5.48, a, 0 and using A.28, A.31 and

A.37 Equation 5.46 becomes

II(k) -. 7r Ifi(zli)hu + fl(Z12 )hl2 l _;:e 6 G; (171, k23)e kao its

+ 7r [f.(z,,)hji- fl(Z12 )h,2] e- e'fG'! (11 lk 2 ,o )
+ r/ 0[fI(zjj)hl + f,(z, 2)h, 2  ft(0)(l5.62)

(0k 21h q (0)

Substituting Equations 5.37 through 5.40 into Equations 5.5 through 5.8

and making use of Equation 5.61, Equation 5.62 reduces to

I,(k) ,- 27rf,(z,,)hlt•1eJk•oAG*1 (in, I k/3,'O)

+ e,.[o, q0)1 (5.63)+ k I q7, - • .i)

When q i 0, the saddle points for I are situated as shown in Figure 5.3.

Turning attention now to I, the proper choice of arg(V'i7) must again

be made and m must be selected so that

TS f-211/ = 2 e-'fC 3; m = 0,1, ± 2 (5.64)
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Figure 5.3: Contours of Integration and Map of Re[q,(z)] for zii # Z12.

agrees with the arg of the SDP of Figure 5.4. The indicated choice is m = 0

so that arg(h2 )j).=0 = X The choice of branch for Vv/j is then

2I = 2q '/2 1/2j•

S,- (zzi) f = o, +-1,±2 (5.65)

* so that
e-Jf = e+•t(1+2n). 

(5.66)

I
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This equation is satisfied foL a& -1 so that

,/2 = 1, 11/2 e-j (5.67)

172 = - 1,121 I e (5.68) I. 1/ 3 1/

h,, = h22 1 qI(2 e-'jf (5.69)

This results in

II

Figure 5.4: Contours of Integration and Map of Re[q,(z)]I

I
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I12(k) 7r [f2(Z,)h 2 , + f2(Z2)h 22, k-1./3 e (- G 11 k'/3,0)

+ [if2(Z21)h2l - f2(z2)h22ulekG/ e-jA2 G'; (- I'17 k2/3, 0)

eka(O) [f2(zzi)h21 + f,(z22 )h 2 _ f2(0)1 (5.70)
+ I [ 2, q(5.0(0)J

which using Equations 5.37 through 5.40 and Equations 5.5 through 5.8

and 5.69 simplifies to

+ k2o) f,(z,,)h,, f,(o)] (5.71)
+ 1 112 %(01)j

Forming the sum of I, and 12 leads to further simplifications. Using

q,(O) = q1 (O) (5.72)

q,(0) = -q%(0) (5.73)

II = -7b (5.74)

hl = hnl (5.75)

with Equation 5.41 results in

I(k) 1(k) + 12(k)

27rf2(z: 2)h2 1-3elf x

x [G; (+ 11,,1' 2/3, o) + Gj (- N 21 ,• /,o) (5.76)

or

2142 1/2
1(k) 2,f 2 (Z,)I L.2/3 q(Z. )I(2(.)+q(..)) x

x jIG (+ 11,1 k2/,,o) + C; (- ,,1 k2/3,o) ). (5.77)
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While Equation 5.77 is complete, it is not in the best form for comparison

to the (singular) first-order stationary phase result, By rearranging the

solution so that the first-order stationary phase solution is a visible factor,

insight may be gained about the nature of the corrected solution. The usual

first order isolated saddle-point solution for this cylinder is 3
1(k) f (z.) 1eiqc(z )-e (5.78)FTJq"(:z.)} I I

Using Equation 5.49, Equation 5.77 may be rewritten as

I ýq,
where

T(z) = [2.,/e'f I, (I1-43-1/ (T (± 1, ,o)+ XC(- II ,o)) 5.8o)

17= 3 iq.(±z.) -q 2 (-za)I] 2/3 (5.81)

and the Airy Functions are as described in Appendix A.

From the above equations, it is seen that the analysis for the two first-

order coalescing saddle points results in a form that can be written as the

first-order stationary phase evaluation multiplied by a function T. This

function acts as a correction to the singular first-order result. Functions 3
of this kind in UTD are called Transition Functions. Since it is known

that the GO result agrees with the first-order stationary phase evaluation

for the reflected field far away from the pole, it is anticipated that the

transition function T(r) is the desired multiplicative correction to GO. The I
expected behavior of the transition function T(z) then for large argument
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is magnitude of unity and a phase of zero. This is seen in Figure 5.5.

For small argument z, T(z) should approach zero in such a way that the

product of T(x) and the infinite GO term result in a finite and accurate

limiting value for the field at the pole. The large argument form of the

3 Incomplete Airy Function is given in Appendix A. Thus for x > 0,

3T() 2-, [2Vrej4 TJ1/4e-4jI•I'r 2  + (!-- + i/e X

=1i. (5.82)

I For z 0,

- 2 (13 ej if• 1I1/4 ; 1.453ej'/'2 Iz11/4 (5.83)

For (0+0') -t 0, Equations 4.1 and 4.5 show that the order of the singularity

of Vp' is

, a [a + 0,](-2-. (5.84)

For v = 3, this is O(Z-r/ 4). The behavior of, qfor (6+9') = 0 is q7 [0 + 0'j.

I Then the behavior of T(vqkl/ 3 ) is

3 T(i.k2/s) cX [a + 81]1/4. (5.85)

Since this is a zero of order O(Z+1/4), then the GO singularity is indeed
cancelled.

I
I
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5.5 The Uniform GO (UGO) Solution for
V =-3

The total corrected GO expression for the reflected field from a superelliptic

cylider with v = 3 is then
e-jk(p'+P) jk2co.6' 17..

(.61 = HVo e ( +I 'I x T(k 2/3) (5.86)

where, using Equations 5.81, 5.10 and 5.36,

11 b sin 0+0) [(( cos( (8)2111) 1/1 (5.87)

I and ,0, ,p and T(z) are given by Equations 4.1, 2.3, 4.6 and 5.80.

For small (0 + 0')/2, j7 behaves like )2/ . (5.88)
a2

The angular region where the pure GO result is invalid may be determined

via Equation 5.87. When 17k2/3 > 10, then T(rks/3) _- 1. When qk2 /3 < 3.5,

then T(qk1/3 ) begins to make significant corrections to the GO result. A

I subjective criterion for a significant departure from the GO result (resulting

in a greater than .04 dB deviation) is q&2 /8 < 5.

The numerical results UGO, GO, PO, and the Method of Moments are

presented in Chapter 6.

5.6 Reflected Field Behavior for v = 3

I The correction to the GO solution takes the form of a two-parameter mul-

tiplicative transition function T(z, v,) where P, is the superelliptic "square-

41
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I
ness" parameter, and z is a variable describing the proximity of the re-

flection point to the pole, or zero-curvature point. The transition function

T(z, v) does two things near the pole; it acts to correct the GO singularity,

and it furnishes an aperture-like oscillatory pattern behavior. As v gets

large and the surface around the pole flattens, this aperture effect becomes

more and more pronounced. In the limit of infinite v, a [ai•] type of

pattern is expected.

The results of Chapter 5 explored two aspects of T(z, v). First, the

limiting case of H,.. T(z = 0, v) is examined. This result is expressed

in terms of the Gamma Function and corresponds to an evaluation of the

field reflected from the pole itself for arbitrary v. Second, T(z, V = 3) is 3
expressed in terms of Incomplete Airy Functions. T(z, v = 3) is associated

with the reflected field both near and far from the pole, but only for the i

superellipse whose v = 3. II
The general function T(z, ) cannot be expressed in terms of known

functions, but it is hypothesized that the general transition function ac-

counting for the distributed current effects around the pole may be con-

structed heuristically, based on a generalization of the integral form of the

Incomplete Airy Function, i.e.

F(t1, a.) = 1j" (e+v"' + e-"' ) e 4ý dt (5.89)1

= 21 cos(qt)e'S dt. (5.90)

The full steepest-descent-path analysis is not tractable for the general case

of N merging saddle points. In spite of this, there is reason to believe that 3
Equation 5.90 may form the basis for a workable T(z, v) after all.
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A comparison of the kernels of Equations 4.24, 5.10 and 5.90 reveal

that their structures are the same in the neighborhood of t = 0 for all v.

It is not therefore unreasonable to suggest that Equation 5.90 is in fact

the correct canonical form on which to base the general correction T(z, v).

I Further, because the integration increment dt is strictly a real quantity,

Equation 5.90 easily generalizes to all real v. The question therefore is

whether Equation 5.90 is sufficiently characteristic of superellipse behavior

to construct a simple and accurate T(z, v), or whether other complicating

I factors arise.

As v becomes large, another effect appears, which is quite unrelated

to the difficulties associated with the pole. The regions where the radius

of curvature decreases with increasing v develop into sharp corners. In

these regions, GO is valid provided that the smallest radius of curvature is

much larger than the wavelength. A natural transition from the mechanism

of reflection over to diffraction must be incorporated into the solution to

achieve full generality for large L, on electrically small cylinders. Some

pertinent results concerning reflection by surfaces with electrically small

3 radii of curvature are found in [4].

I
I
I
I
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Chapter 6

NUMERICAL RESULTS

This chapter presents the numerical data for the reflected field from vari-

ous superelliptic cylinders, calculated by the various methods of GO, UGO,

PO, and MoM. First, results for reflection from the pole are presented, then

results for reflection near and far from the pole for v = 3 cylinders are

presented. The curves display the different scattering mechanisms and/or

artifacts contained in the various methods. Whenever possible, an inter-

pretation of the results will be pointed out in the discussions accompanying

the graphs. 3
With regard to efficiency, it is worth noting that in Table 6.1, the UGO

a=b=lA a=b=3A a=b=5A a=b=10A a=b=30A

GO .88s .83s .77 s .72s .83 s
UGO 31.4 s 16.9 s 12.4 s 8.25 s 5.1 s
PO 36.1 s 1.8 win. 3.2 min. 6.0 min. 18 min.

MoM 3 167 min. 1 4.8 min. 9.5 rain. 32 rin. I> 4hrs.

Table 6.1: Comparative CPU times in VPU (VAX 780 Processing Units) I
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solution for electrically large cylinders is more than two orders of magnitude

faster than Physical Optics, and more than three orders of magnitude faster

than the Method of Moments. Further, the UGO solution is the only

method whose computation time decreases as the scatterer gets larger. This

phenomenon is due to the asymptotic behavior of the transition function

T(z, v = 3); it is easier to compute for large arguments. While GO is also

I very efficient, it does not produce a uniformly valid result around the pole.

The slight variations visible in the GO CPU times reflect the variabilities

and inefficiencies which exist in a multiuser computer environment. The

actual computations were performed on a VAX 8550 running the VMS

operating system. Each entry in Table 6.1 represents 90 backscattered field

computations for a v = 3 superquadric cylinder.

6.1 Reflected Fields from the Pole for Arbi-
trary v

I The basic asymptotic result concerning the backscattered field from the

pole is given by Equation 5.26. This equation is a Physical Optics approx-

imation of the reflected field from the pole, neglecting the second-order

3 effect of creeping waves, and excluding false PO current terminations. The

backscatter field for various types of superellipsoids is plotted versus v in

Figure 6.1. Should future research produce a general reflection transition

function T(z, v), Equation 5.26 will be useful as a check on the small argu-

ment x limit of T(z, v), since 5.26 is valid for all v.

Figure 6.1 illustrates that the UGO solution provides a smooth tran-

I
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sition from (ýF7 ) type of behavior which is characteristic of a circular 3
cylinder, to a (2a) behavior which is representative of PO scattering from

a strip. On the left side of the figure, where v = 2, the backscattered field

of a circular cylinder as a function of radius is seen by the intersection of

the curves with the leftmost y-axis. The V/1 behavior is evident. On

the right side of the figure, as v gets large, the field approaches that of

the backscattered field from the broad side of a rectangular cylinder. As a 3
function of radius, the intersection of the curves with the rightmost y-axis

shows the 2a behavior expected from a flat aperture. Because Equation I
5.26 is only valid for the backscattered field from the pole, Figure 6.1 does

not provide information about the field pattern away from the pole. I

I
I
I
I
I
U
I
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In Figures 6.2 and 6.3, the PO results of Chapter 4 for the TE polariza-

tion are displayed on a magnified scale, normalized against the asymptotic

results of Equation 5.26 and Figure 6.1. Since the data were generated

using numerical integration, the endpoint effects of the false PO termina-

tion currents make themselves visible by the observed periodic oscillations.

Note that the endpoint effects diminish both as the radius increases and as

v increases. Also note that the scales represent 0.2 dB fluctuations which

accentuate this effect.

The decrease of the endpoint effects with increasing radius is a statement

of the fact that, with valid assumptions about the PO currents and the

surface reflection mechanism, a PO result approaches 0O in the limit of

infinite frequency. Analytically, PO endpoint contributions usually decrease

as 0(1/k), where the stationary-phase terms are typically 0(l).

The decrease of the endpoint effects with increasing v is a more subtle

effect, but is easily explained. When v is large, the cylinder is approxi-

mately a rectangle but not exactly. The current terminations do not occur

at the corners, as in the case of an actual rectangle, but the constant-phase

radiation region of the surface does end there. Instead of an abrupt current

termination, there is a rapidly fluctuating phase and gradually decreasing

current amplitude on the top and bottom sides of the rectangle. This gen-

erates a much smaller false return than a current termination immediately

adjacent to the constant-phase large-amplitude face of the rectangle.

The validity of Equation 5.26 is indirectly confirmed by the fact that

the curves for all v tend toward zero dB with increasing radius. If Equation

5.26 were inaccur. Le, then it would not normalize the numerical integration
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to unity (0 dB). Also, if all endpoint effects were subtracted out, then all

the curves should lie flat on the zero dB line, without oscillation. Again,

it must be noted that the amplitude scale in both Figure 6.2 and 6.3 has

been greatly exaggerated to display the termination current artifacts.

6.2 Reflected Fields from v = 3 Superelliptic
3 Cylinders

This section presents data for the backscattered fields from superquadric

cylinders of v = 3. Here, the fields are investigated for reflection points

both near and far from the pole, and several methods are plotted together

for comparison. Unless otherwise noted, the Method of Moments results

are for the TM polarization, in order to minimize the effect of creeping

waves around the cylinder. Figure 6.5 is the exception, which shows both

the TM and TE results using the Method of Moments.

The data are plotted as (echo widths)/ira. This means that the data are

I normalized to the 2-D echo width of an infinite circular cylinder of radius

a. Figure 6.4 shows the backscattered field as a function of the angle from

I the x-axis for a cylinder of radius a/A = b/•A = 1.

The GO result is significantly different from the other curves in virtually

all regions, and it is the only curve that is unbounded. Note that the UGO

and the PO results are almost indistinguishable around the main beam.

The UGO and the Method of Moments differ by less than 1/2 dB over the

3 entire angular range. It is worth noting that a/A = b/A = 1 is the worst

possible case, where the various mechanisms and effects such as creeping

I
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waves and false PO returns are most significant. When the electrical size u
of the cylinder increases, then UGO and the other methods converge. This

includes GO when the reflection point is far from the pole. (Section 5.5

and Equation 5.87 define "near" and "far" from the pole.)

I
I
I
I
U
I
I
I
I
I
I
I
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In Figure 6.5, at the pole, the TM polarization via Method of Moments

is 1/2 dB below the UGO, whereas the TE polarization via MoM is 1/2 dB

above the UGO figure. Slight discrepancies are also noticeable around the

45 degree mark. The TE case should show stronger creeping wave effects

for small radii. This could explain part of the discrepancy. Higher order

terms in the asymptotic analysis could also account for these effects. In

any case, the comparisons are quite close considering the small amount of I
deviation, thereby, validating the results.

The differences between PO and UGO in Figures 6.4 and 6.6 - 6.8 I
can be explained by the termination current artifacts present in the PO

solution, which are absent in the UGO. The UGO solution then, is the

pure reflection mechanism, inasmuch as the PO can accurately model the

primary radiating (stationary-phase) currents on the surface.

As the radius increases, the adverse effects diminish and the UGO result

proves to be very accurate indeed. Figure 6.6 shows that for a/A = b/A = 3,

the UGO and TM-MoM results differ by less that 0.2 dB over the entire 3
angular range. Larger radii cases in Figures 6.7 and 6.8 show even closer

agreement between the various methods. -
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I
II Chapter 7

II SUMMARY AND
CONCLUSIONS

I Superquadric surfaces have points of zero curvature at which GO incor-

rectly predicts an infinite reflected field. The actual reflected field is finite

and is well approximated by the method of Physical Optics. Rather than

simply employ PO, however, a correction to the GO solution is constructed

via an asymptotic analysis of the PO formulation for the reflected field. The

3 purpose of the asymptotic analysis is to achieve an improvement over PO

by avoiding the false returns associated with the truncation of currents at

shadow boundaries and by avoiding numerical integration over electrically

large bodies. In the spirit of UTD then, the goal is to retain the advan-

I tages of GO in terms of calculation efficiency and analytic simplicity while

simultaneously enjoying the accuracy and physical insight afforded by the

Physical Optics, hence the uniform GO, or UGO solution.

The numerical results of Chapter 6 show excellent agreement between

the UGO solution developed here and the Method of Moments. There is

I also excellent agreement between Physical Optics and the Method of Mo-
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ments, validating the inital assumption that Po is a good way to describe

the reflection mechanism. In most of the regions where PO and the Method I
of Moments disagree, the corrected GO solution more closely agrees with

the Method of Moments. This reveals that the UGO solution avoids the

false current termination effects which afflict the PO result. One exception I

to this is when the Method of Moments includes a significant higher order

scattering mechanism in addition to the reflected field, such as the creeping

wave. In this case, the UGO solution does not include this effect.

Finally, the issue of scattering by superellipses in three dimensions is I

suggested as an interesting area for future research. This would be the next

natural step toward making superquadric surfaces into a viable electromag- I

netic modeling tool.

I
I
I
I
I
I
I
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Appendix A

I COMPLETE AND
INCOMPLETE AIRY

I FUNCTIONS
I
I The Airy Functions satisfy a second-order differential equation known as

Airy's Differential Equation A.2,A.3,A.23. The integral solutions of these

equations are known as Airy integrals and their properties are well known.

The structure of the Airy integrals is such that they are characteristic of the

arbitrary interaction of two saddle p)oints, and in the case of the incomplete

Airy integral they describe the interactions of two saddle points with an

endpoint of integration.

This appendix presents the definitions and asymptotic forms of the com-

plete and incomplete Airy functions. While the Complete Airy Functions

are not a part of the solutions presented in Chapter 5, they are used in

U the numerical evaluation of the Incomplete Airy Functions. Asymptotic

formulas for the Airy integral are given in [1].
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A.1 Complete Airy Functions

A.1.1 Integral Representation

The Complete Airy functions Ai and Bi are defined as

Ai(77) = Y-- e("n )d =ý j e(n'+4) d,
Ai(t1 ) = ",j - 2" L i(A.1)
Bi(77) = 0`3)& = (; +'. 4) d,,

where the contours L1 ,2,s are shown in Figure A.1. I

, • I

'• ~~L3._ 2 .. L2

Z-PLAN S-PLANE

Figure A.I: Contours of integration for the Complete Airy functions

I
I
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A.1.2 Differential Equations

I Ai"(z) - zAi(z) = 0. (A.2)

3 Bi"(z) - zBi(z) = 0. (A.3)

A.1.3 Series Representations

I Ai(z) = clf(z) - c2g(z) (A.4)

Bi(z) = VF[cif(z) + c 2 g(z)] (A.5)

f(z) = \3 (3) (A.6)

18=0 G3,(3k+)!(A8
1 +1Z3 + L4 a 1.4.7 9

T! 6! z+ -9! z + - - (A.7)

k=

z iz +7! z + 10! +"". (A.9)

+ 1) (A.10)

3(a+ 1) = (3a + 1)(3a + 4)...(3a + 3k - 1) (A.11)

Where a is arbitrary and k = 1,2,3,...

c, = Ai(0) = Bi(O)/Vr = 3- 2/3 /r(2/3)

= 0.355028053887817 (A.12)

es = -Ai'(0) = Bi'(O)/v/3 = 3-13/ r(1/3)

I = 0.258819403792807 (A.13)

I
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A-1.4 Large Argument Forms

for Javg z I < i,

Ai(z) 2-11 _ 1,3/2 r~k(3 k+) ( 2 z3/2j (A.14)

for Jarg zI < 73

Bi(z) E(s~ -(3 - z1 3/2 (A.15)
k=O 2,

A-1.6 Relations between Solutions

Bi(z) -~ e+hlr/Ai( ze32 w/ 3 ) + e-jw/6Ai(zeij 2 vj3) =0 (A.16)

Ai(z) + e' 2~'/Ai(zeS2 w/3) + e -2 1r/3 Ai(zeij 21/S) =0 (A .17)I

Bi(Z) + ei2-/SBi(zej2w/3) + e1j./ 1 Bi( ze-jw 3 ) =0 (.8

2 Ai(ze~h32w/3) e~j2 v/ 3 lAi(z) ± Bij(z)} (A.19)
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* A.2 Incomplete Airy Functions

The Incomplete Airy functions are defined as
1•, =ej {' d -, i = 1, 2, 3

I O(A.20)
27rj fji,

_-< 101 _< If- •< 02' !5 Ir, - _< 03 _!5-• (A.21)

3 where the ooej'O" and fli correspond to the endpoints of the S-plane paths

Li shown in Figure A.2. The contour L1 may be deformed onto the positiveI
JY jY

"L i x.I•

L2\

Z-PLANE S-PLANE

Figure A.2: Contours of integration for the Incomplete Airy functions

real axis in the S-plane to yield the following representation of G1, denoted
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by Ti

=d 1 00 cia ={- dz. (A.22)

A.2.1 Differential Equation

-z - j] 11( ZP)= 0 (A.23)I

A.2.2 Large Argument Forms

Assume that _9> 0 and v >> 0. U
2-"• e3+ + -+ >> 0 (A.24)

201 +
""X _ 3/2 I a

(0) () ej d- e2](A.25)

where 4

dt 2ag(, d.9 V - x

1 [g(a) - tgW(j)] (A.26)

2 [3t'gs(a) - 3g'(s)_- ag4()] (A.27)

1
g(O) = T4

g'(0) = -1

g"(0) = T I
ja= zp + 2Z3/2)1/

a = ± s. fo r ± (/3p - / )
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A.2.3 Relations between Solutions

HG 2(i17, )= &1) - Ai(71 ) (A.28)

G3(17,/3) =G, (17,P) - 1[Ai(t7) + jBi(iq)] (A.29)

-G 20~, 0) + 1 Ai(7i) - jBi(v7)) (A-30)

Ai(ij) G- G(17, P) + G*(,q*, 0) (A.31)

GIi~e+12w/3 P3) - e -2w/3 G2 (77, Pe+i2W/3) (A.32)

G1(i~e- 2j 3 /3,) e e+j2w/S3C(17, pe-1w/3 ) (A.33)

I C(i7e +'2w/3 13) - e 2w/3 G3(71 ,# /3e2'r/) (A .34)

C2(,qe-!w 18 /3) e +j 21r/3GIi7 (11,/e2w/3) (A .35)

G3(~e +'12w 3 1 p) e- &I/3 Gji(,/3e+j~v/3) (A.36)

G3(i~e'j 1 3 , p3)- e+i2w/3 G2 (17, le -12/3) (A-37)
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Appendix B

COMPUTER PROGRAMS
I

This appendix contains the various computer programs used to calculate

the reflected fields from the superelliptic cylinder. Some of the Airy func-

tion subroutines were contributed by M. C. Liang.

PROGRAM UNIFORM GO

This program calculates the reflected field from the superellipse using Uni-

form GO, or UGO. i
options /extend-source
program go

This program calculates the GO backecattered field from a
superellipse.

! parameter pi a 3.141692664
real theta, r.c, Ego, a. b, knu, area, Refpnt, zs, zc, t, tp

real x, xxx
complex transition
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3 ~external r..c, transition

Refpnt(theta) - atan(sign(abs(
+ ((b/a)**knu)*tazi(theta))ss(i/(knu-1)) ,tan(theta)))

* IHgo (theta )-sqrt ( r..c( Refpnt(theta), a, b, knu )/2)

knu a3.0

type*, 'Input a'
accept*, a
boa

do thetau-45, 45, .995

I Calculate (xusigmaskt2/3)J

I t uaba(theta * pi/180)
tp = t
za - ( b *s in((t~tp)/2) M s 3/2.)
zc -( a * cou((t~tp)/2) ) Ms 3/2.)

xxx - zs**(2./3.) * ( 2*cos((t-tp)/2)/I + ( zi + zc )**(1/3.) )'is(2/3.)

xxx - &in ( xxx*(2*pi)4's(2/3.), 24.0 1 bug in airy function

Ifor large arguments

I area - Hgo( thetaspi/180 ) * cabs (tranaition(x))
area -area**2 * 2spi /(pi * a)

write(6,*) theta, area

end do

* end
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SUBROUTINE RC
This subroutine calculates the radius of curvature at a point on the surface
of a superelliptic cylinder.

options /extend-source
real function R-C( phi, a, b, knu )
real phi, a, c, knu, a, b
real sa, ca, seal, coal, sam2, cam2

* = abs( sin(phi) )
c =absC cou(phi))

sa = s **knu
ca c **knu

saul a a* (knu-l)
caml = c ** (knu-1)

32 . a.. (knu-2)
car2 = c ** (kmu-2)

R-C ((a**knu)*saml)**2 + ((b**knu)*caml)**2 )**(3./2.) / (

+ (knu-l) *
+ (a*b)**(knu-l) * ((a*s)**knu+(b*c)**knu )**(l+1/knu) *

+ (s*c) **(knu-2))

return
and

I
FUNCTION TRANSITION
This subroutine calculates the value of the transition function T(m). 3

options /extend-source
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complex function Transition ( argument )
complex iai, J, z

external iai
real pi, argument

parameter ( pi = 3.141592654, j=(O.,l.) )

z - iai( 0.0, +argument )
+ + iai( 0.0, -argument )

z = conjg(z) * 2 * sqrt(pi) * (abs(argument)**(1./4.))
+ * exp( -J*2./3.*(aba(argument)**(3./2.)) + j*pi/4 )I

Transition * z
return

end

Ii
i
I
i
I
i
i
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PROGRAM POLE BACKSCATTER
This program calculates the backscattered field from the pole of a superel-
liptic cyliuer.

program super ellipse pole 3
integer n
real k, c, a, x, y, pi, gamma, btan2, k)u, fact, deriv

complex i, J/(0.,1.)/I

pi = 3.141692664

k 2 * pi

type*, 'input a'
accept*, a

do knu=2.0, 20.0, .1

deriv = - 2 * gamma( knu ) ! -2(alpha-l)!

i = gauma(l/knu) * 2/knu *

+ (-ga•aa(knu+1)/(deriv*j*k*a) )**(1/knu)
+ * cexp(J*k*2*a) i
+ * csqrt(j*k/(2*pi)) * a

WRITE (6,*) knu, cabs(i), btan2(aimag(i),real(i))*180/pi, i

end do I
END

real function gmMMA(x)
integer i

real x, fact
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call gýa ( x, fact, i)
gamma = fact
return

* end

I

I
i
i
I
i
I
I
I
I
I
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PROGRAM PHYSICAL OPTICS
This program was used to calculate the Physical Optics reflected field from
the superelliptic cylinder.

OPTIONS /EXTENDSOURCE
PROGRAM BISTATIC PO
INTEGER PIECES, I, N, MAXPNTS
real btan2
external btan2
COMPLEX*16 C, 3, H, z

real phase
REAL*8 PHI, LOW, HIGH, RE-H, IM-H, RE-RESULT, IMRIESULT, lambda

REAL*8 FMIN, FMIX, FSTEP, F
REAL*8 PI, A, V, K, L, U, HNORM, L.-,in, amax, NORM-H, ONE, CDABS

COMMON A, PHI, J, K, V
EXTERNAL RE-H, IM-H
phase(z) - btan2( dimag(z), real(dreal(z)) )*180/pi

ONE - .oooooooooooooooo
3 = (0.1.)

PI 4 * ATAN (ONE)

TYPE*, 'Input the observation angle (degrees)'
ACCEPT*, PHI

TYPE*, 'Input the cylinder radius (meters)'
ACCEPT*, A

TYPE*, 'Input the frequency range [low,high,step](Ghz)'
ACCEPT*, fain, fmax, fstep

TYPE*. 'Input the superelliptic parameter (knu)'
ACCEPT*, v
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Iphi - phi * pi/IBO
fmin U fmin * 1.9

fmax afuax * 1.9
fatep = f step * le9

!Loop through several frequencices.

maxputs a nint( (fmax-fmin)/f step)I ~WRITE(3 ,*) mszpnts * real(fmin/1e6). real(f step/1eO)
DO Nei, PUXPNTS + I

I Change some parameters for each point.

C A -((N-1)*(amax-amiu)/MAIPNTS + amin)

C PHI *C(N-1)*(pi/2)/MAIPNrS + -pi/2)

f -((N-1)*(fmaxr-tmin)/XA1PNTS + fain)

lambda U299 792 837.1 / f
k -2 *pi /( lambda )
c - 2 sCDSQRT((J*k)/(8*PI))

1Calculate the point.

HIGH w PI/2.ATAN( ABS(TIN(PHI))**(i/(V-M)
+ *SIGN(-ONE,SIN(PHI)))ILOW a HIGH - PI

H - (0.10.)

PIECES = 2 * NINT( A/lambda)I DO I-i. PIECES

L a (I-0) * ((IGH - LOW)/PIECES) + LOW

V - I * ((IGH - LOW)/PIECES) + LOW

I Integrate the real and imaginary parts of I due to J.

CALL DQG32( L, U, RE-J, RE..RESULT)
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CALL DQG32( L, U, IM.H, IMNRESULT )
9 a H + CMPLI(REJRESULT,IMRESULT)

END DO

HaH*C*A

Normalize the result against the GO result.

NORM_. a A * PI

H.N01RM - 2 * PI * CDABS( H )**2 / NORM4H

: Output the data to a file and notify the user of progress.

WRITE(3,*) 20*loglO(cdabs(H)), phase(h)
TYPE*, N, ' of ', MAXPNTS, ' f=', f/169, ' h-1,

+ 20*10g10 (real (abs (h.norm)))

END DO

CALL STATISTICS
END

These functions compute the real and imaginary parts of H.

REAL*8 FUNCTION RE.. ( I )
REAL*8 1, AMPNUMER, PHASELNUMER, PHASE-DENOM, AMPDENOM

REAL*8 PHI, A, S. C, V, TMP, IN-B, K

COMPLEX*16 J
COMMON A, PHI, J, K, V

LOGICAL REAL /.FALSE./

REAL = .TRUE.

I The real and imaginary parts are very similar.

ENTRY IM.. ( I )
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S = SIN(1)
C - COS( )

I Calculate the numerators of the amplitude and phase functions.I!
AMP..UMER z SIN(PRI)*(SIGN(ABS(S)**(V-1),S)) +

+ COS(PEI)*(SIcN(ABS(C)**(V-1) ,C))
PRASEMNER - 2 ( C * COS(PHI) + S * SIN(PHI) )

! Build the denominators of the amplitude and phase functions.

TMP - ( ABS(S)**V + ABS(C)**VH)

PKASE-DENOM a TMP**s(1/V)
AMPDENOM a PHASE-DENOM * TNP

I Now combine the functions.

I IF ( RE.AL ) THEN
RE-H = (AMPNUMER/AMPDENOM)

+ COS( K*A*(PRASENUMER/PHASE.DENOM) )

ELSE
IMI - (AMPNUIMER/AMP.DENOM) *

+ SIN( KA* (PHASENUMER/PHASEDENOJ) )
END IF

I Isume imaginary unless the real entry point was taken.

I

I
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SUBROUTINE CDQG32
This subroutine performs a complex double-precision Gaussian quadrature
numerical integration on a given function.
*1+

*, This is a complex double-precision 32-point gaussian quadrature

*! integration routine. It integrates the function FUNC on a strait

*! line in the complex plane from ZL to ZU.
,1

DOUBLE COMPLEX FUNCTION CDQG32 ( ZL, ZU, FUNC )
DOUBLE COMPLEX FUNC, FCT, Y, ZL, ZU
DOUBLE PRECISION A, C1, C2, C3, C4, CS, C6, C7, CO, C9, CIO

DOUBLE PRECISION Cii, C12, C13, C14, Cis, CIO, CiT

DOUBLE PRECISION 1, BI, B2, B3, B4, BS, B6, B7, B8. B9, BIO

DOUBLE PRECISION Bll, B12, B13, B14, B1B, BI6, B17
PARAMETER ( A - O.SDO ) I

PARAMETER ( Ci a .49863193092474 DO )
PARAMETER ( C2 a .49280575577263 DO ) I
PARAMETER ( C3 - .48238112779375 DO )
PARAMETER ( C4 a .46745303796886 DO )
PARAMETER ( CS w .44816057788302 DO )I
PARAMETER ( C6 - .42468380686628 DO )
PARAMETER ( CT a .39724189798397 DO )
PARAMETER ( C8 - .36609105937014 DO )
PARAMETER ( C9 a .33152213346510 DO )
PARAMETER ( CIO a .29385787862038 DO )
PARAMETER ( C11 = .25344995446611 DO ) I
PARAMETER ( C12 a .21067663806531 DO )
PARAMETER ( C13 a .16693430114106 DO )
PAIRAMETER ( C14 a .11964368112606 DO ) I
PARAMETER ( CIS * .07223698079139 DO )

I
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PARAMETER ( C16 - .024163832843869 DO )
PAUAMETER ( B1 a .36093060047350 D-2 )
PARAMETER ( B2 - .8137197366452 D-2 )
PARAMETER ( B3 a .12696032654631 D-1 )
PARAMETER ( B4 a .17136931466510 D-1 )
PARAMETER S - .21417949011113 D-1 )3 PARAMETER ( B6 m .26499029631188 D-1 )
PARAMETER ( B7 - .29342046739267 D-1 )
PARAMETER B 88 u .32911111388180 D-1 )3PARAMETER B 9 a .36172897054424 D-1)
PARAMETER ( 810 = .39096947893635 D-1 )
PARAMETER ( B1l - .41666962113473 D-1 )
PARAMETER ( B12 - .43826046602201 D-1 )
PARAMETER ' B13 a .46686939347881 D-1 )
PARAMETER B 814 - .46922199540402 D-1 )
PARAMETER B16 - .47819360039637 D-1 )
PARAMETER B 816 - .48270044267363 D-1 )

FCT I I ) - FUNC ( ZL + (ZU-ZL)*I)

i Y ( 0.0, 0.0)

Y = Y + B1 * (FCT(A+C1) + FCT(A-C1) )

Y a Y + B2 * (FCT(A+C2) + FCT(A-C2) )

Y = Y + B3 * (FCT(A+C3) + FCT(A-C3) )
Y - Y + B4 * (FCT(A+C4) + FCT(A-C4) )
Y - Y + B5 * (FCT(A+C6) + FCT(A-CS) )

Y a 1Y + B6 * (FCT(A+C6) + FCT(A-C6) )
Y a Y + B7 * (FCT(A+C8) + FCT(A-C7) )
¥ - Y + B8 * (FCT(A+Cg) + FCT(A-C9) )
Y Ia Y + B9 * (FCT(A+C9) + FCT(A-C9) )
Y w Y + B81 * (FCT(A+C1O) + FCT(A-C1O) )

Y a Y + 811 * CFCT(A4C11) + FCT(A-C11) )
I a 1 + B12 * (FCT(A+C12) + FCT(A-C12) )
Y a T + B13 * (FCT(A+C13) + FCT(A-C13) )
Sa 1Y + B14 * (FCT(I+C14) + FCT(A-C14) )
Y * 1a +16 * ( FCT(A+C15) + FCT(A-C1S) )
Y a t + BDi * (FCT(A+C16) + FCT(A-C16) )
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I• CDQG32 =(ZU-ZL) Y

• I
i
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I
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i
i

I
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FUNCTION INCOMPLETE AIRY
These functions compute values for the Incomplete Airy functions.

complex function iai ( b, x )
complex iaip, ibi, ibip, zi, z2, z3, z4
real b, x
call aiinc ( b, x, zi, z2, z3, z4 )
ian = zI
return

I entry iaip
call aiinc ( b, x, zi, z2, z3, z4 )
iaip = z2
return

entry ibi
call aiinc ( b, x, zl, z2, z3, z4 )
ibi - z3
return

entry ibip
call aiinc ( b, x, z1, z2, z3. z4 )
ibip = z4

return
end

SUBROUTINE AIINC(BETA,IS,AII.AIIPAII,AIIP)

COMPLEX AII,AIIP,FCT,FINT,CJ,CJP4
COMPLEX AIH,AIHPATEM(1001),ATMP(1O01)
COMPLEX GI,GIP,HI.BIP,hI,AIP,BIBIP

COMPLEX CTI,CT2,CT3,CT4,CT6

COMMON/ERR/ERR1 ,ERR.2,ERR3,ERU4I C
C APRIL 17, 1986

I C
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C* THIS SUBROUTINE IS USED TO CALCULATE THE INCOMPLETE AIRY *

C FUNCTION AND ITS DERIVATIVES, THE FUNCTION IS DEFINED AS * U
C* AII(BS)-INT(BINF,FS) *

C* AIIP(BS)=INT(B,INF,CJ*T*FS) ,

C* FS=E1P(CJ*(T**3/3+S*T))/TPI * 3
C* NOTE THAT THE AIRY FUNCTION AI IS DEFINED AS *

C* AI(S)=INT(-INF,INF,FS) *

C IARGmi: SMALL NEGATIVE ARGUMENT OR POSITIVE ARGUMENT FORM;

C WITH BETA >>1
C -2: LARGE NEGATIVE ARGUMENT FORM( IS <<0);
C USING THE FRESNEL INTEGRAL (ASYMPTOTIC FORM)

C -3: SMALL NEGATIVE ARGUMENT OR POSITIVE ARGUMENT FORM;

C WITH O< BETA <<I
C =4: EVALUATE THE INTEGRAL FORM; AIINC(B,S)=AIINC(0,S)
C -INT(O,B,FS); WHERE FS-EIP(CJ*(0.33*T*T*T+S*T))/TPI

C
C ICOM-I: IF BETA < 0 ; IN THIS CASE TAKE THE COMPLIMENTARY

C PART OF AII(BETk,IS);I
C I.E. AII-AI(IS)-AII*,_(ABS(BETA), IS)
C wO: IF BETA > 0.
C

PI"3.14169265369

TPI=2.*PI 3
CJ-(O.,1.)
CTIO-CJ*PI/4.
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CJP4-CEXP (CTI)IP-QR(I
BETIuABS(BETA)
ICONSO

IF(BETA .LT.0. )ICOH=l
IARG.4
T1-BET1*3E714IS

IF(T1.GE.i8. )IARG-1
C IF (BETI1. LE.ERR4) IARG=3

IF(XS.LE.-7.)IkRG=2
CALL GIHI(IS.GIGIP,HI.HIP,AI,AIPBI.BIP)
AI=O .S* (AI.CJ*GI)

AIHP=0 .6*(AIP.CJ*GIP)
C

GO TO (100,200,400,400)IARGI100 CONTINUE
C
C THIS IS TRE LARGE BETA FORK4; WITH SMALL NEGATIVE IS OR

C LARGE POSITIVE IS
C

CT1-CJ* (BETI*BETI*BETI/3 . +S*BETi)

CT2=CEIP (CT 1)
BBESi . /(BETI*BET1+XS)
DBS2=BBS1 *BBS 1
BBS4wBBS2*BBS2
CT3-CJ*BBSI* (1.- (10. *BET1*DETI-2 .*15) *BBS4)

C CT4uBBSI*D8S2*2.*BET1*( . -15. *(3 .*BET1*DETI-IS)*BBS4)

CT4uBBS1*BBS2*2. *BETII AiIX-(CT3.CT4) *CT2/TPI
C

C CT3wCJ*BBS2*(-I .+BBS4*(52 .*'BETIsBET1-8 .*IS))

C CT4uBBS4*8.*BET1*(-1.+(110.*DET1*BETI-30*XS)*BBS4)
C

CT3=-CJ*BBS2

CT4=-DDS4*6 .*BET1
AIIP. (CT3.CT4) *CT2/TPI+CJ*BET1*AII



GO TO 900
200 CONTINUE
C
C THIS IS THE ASYMPTOTIC FORM FOR LARGE NEGATIVE XS;

C IN THIS CASE THE FUNCTION IS APPROXIMATED BY FRESNELI
C INTEGRAL

C TIE LARGE AR GUMENT IS DECIDED TO BE USED FOR IS< -7.;1

C IN THIS CASE THE ERROR IS ABOUT 0.3% FOR BETA=O.

ABIS-ABS (IS)
SAXS-SQRT (ABIS)
SSAIuSQRT (SAIS)
DEPS-BETI-SAIS
CT3m-CJ*2. *ABIS*SAIS/3.

CT4uCEXP (CT3)I
C
C BRANCH INTO LARGE AND SMALL ARGUMENT FORMS

CI
IF(ABS(DEPS).GT.O.03)GO TO 250

C

C SMALL ARGUMENT FORMS
C

Ti-i . DEPS/ (6. sSAIS) -DEPS*DEPS/ (72. *ABIS)
DEBTA=TI*DEPS*SSAX
DEBTA2=DEBTA*DEBTA
CTIuCJ*DEBTA2
CT2wCEXP (CTi)

CTIuQPI*(0.T070106781,O .7070106781)

FINT=O. 5*CTI-DEBTA-0 .33333334*DEBTA*DEBTA2*CJ
TIi l-0. 625*DEPS/SAIS+0. 3402777778*DEPS*DEPS/ABXS
CTS=-0. *CT2*TI*CJ/ (ABXS*3.)

AIIuCT4* ((1 *CJ*O. 104166866667/ (SAIS*ABZS) )*FINT/SSAX.CTS) /TPI

T2- . -0.4376*DEPS/SAXS.0.409722222*DEPS*DEPS/ABXS

CT6-T2*CT2/ (3. *SAXS)I
AIIPuCT4* ((CJe0. 1458333333/ (SAXS*ABIS) )*SSAI*FINT-CTS) /TPI



H GO TO 900
C
C LARGE ARGUMENT FORMS
C
250 GEO=1./SSAII ~Ti=BETI*BET1*BET1/3 . XS*BET1.2. *SUS*ABIS/3.

DEBTA=SQRT (Ti)

IF(BET1 .LT. SlXS)DEBTlm-DEBTAIC GEBTA-GEO
C T1=BET1*BET1+XS

C IF(ABS(T1) .GE.0001)GE8TA=2.*DEBTA/TI

GEBTA=2.*DEBTA/ (BETI*BET1IXS)
DEBTA2=DEBTA*DEBTA

CALL FCTZ(1 SFCT,DEBTA2)

CT1 =CJ*DEUTA2
CT2=CEXP (CT 1)

CTI=QPI*(0 .7070106781.0.7070106781)

FINTO . 5*CONJG(FCT) *CJ*CT2/DEBTA
IF(DEPS .LT .0.)FINT-CTI+FINT

C
CTSwO. 5*CJ* (GEBTA-GEO) /DEBTA*CT2

AIIu=CT4* ((GEO+CJ*0. 10416666667*SSAI/ (ABIS*ABIS) )*FfINT+CTS) /TPI

I ~CTS-(BET1/ (BET1*BET1+IS)-0. 5*SSAX/DEBTA)*CT2
AIIPUCT4* ((CJ*SSAI+0. 1468333333/ (SSAI*ABIS) )*FINT-CT5) /TPI

U GO TO 900
C
C300 CONTINUE
C BET2=DETA*BETA

C BET4uBET2*DET2
C BETB=BET4*BET4
C XS2sXS*XS
C XS4=XS2*XS2
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C Ti=BETI-BETI*BET2* (BET41126 .+XS*BET2/1 . +1S2/6.)

C T2=BET2*(BET2/12 .*0 . *XS)-(BET4/i2. )* (BET4*BET2/135+
C X S*BET4/12.+XS2*BET2/3.+XS*XS2/2.)

C T3=(BET1*BET4/6. )*(BET8/4212. +IS*BET2*BET4/297.

C $ +XS2*BET4/54.*IS*XS2*BET2/21 . +S4/20.) +71
C AIzI=IE-CMPLI (73 .2) /TPI

C T4=-(BET1*BET2/3. )*(BET2/5.+XS)+(BETI*BET4/6.)

C $ * (XS*1S2/5. eXS2*BET2/7.*IS*BET4/2T . BET2*BET4/297.)
C T5=0.5*BET2*(1.-BET2*BET4/72.-XS*BET4/9.-XS2*BET2*0.25)

C AIIP-AIEP-CMPLX(T4.TS) /TPI
C GO TO 900

400 CONTINUE
N3=25
IF((BETI.GE.3.) .AND.(IS.GE.0.))N3=50
NNT-BETI*N3+1
Ni=NNT/2
N2=NNT-Nl*2
IF(N2.EQ .O)NNT=NNT+l

IF(NNT.LE.3)NNTui3U
DELT=BETI/ (NNT-1)

DO 410 IwliNNTI

Ti=DELT* (I-i)
CTI=CJ* (71*71*71/3. +XS*Ti)

CT2-CEIP (CT 1)
CT3-CJ*Ti*CT2
kTEM(I)uCT2

TMP (I) wCT3

410 CONTINUE

CT4=(0.,0.)

CTS=(O. .0.)I

DO 440 J-1,Nl
Jlu2*J
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CT4=CT4+(ATEM(JIM)+4.*ATEM(Jl)+ATEM(JIP))*DE-LT/3.

CTS=CTS+ (AMP (JiM) 4. *ATMP (Ji) ATM!'(JiP) )*DELT/3.
440 CONTINUE

I CIHC4/P

AIIP-AIHP-CTS/TPI

900 IF(ICOM.EQ.C)RETURN
C
C 1C014-0 MEANS THAT BETA > 0;ICOM1l MEANS THAT BETA < 0.

AII=AI-CONJG(AII)
AIIP~AIP-CONJG (AIIP)

RETURN
END3 SUBROUTINE GIHI(XS,GI1GIP,HI,NIPAIIhIiP,BIl,BIlP)

C XS: REAL ARGUMENT3C GI,GIP,HI,HIP: COMPLEX VARIABLE
C THIS SUBROUTINE IS USED TO CALCULATE THE GI.HI FUNCTION
C

COMPLEX All ,AIIP ElI BlIP

COMPLEX ZSGI ,GIP,HIHIP ,ATl,AT2
DIMENSION AGT(l00l) ,AGP(l001)
COMMON ERRI

PI=3.14i59266369
P14=PI/4.

SQPI-SQRT(PI)
IARG=2.
IF(IS.GE.4.7)IARG=3I IF(XS.LE.-9.)IARGul

C
C IARGal: NEGATIVE LARGE ARGUMENT; TEE SOLUTION IS OSCILLATING

C IARGw2: SMALL ARGUMENT; FOR BOTH POSITIVE AND NEGATIVE ARGUMENT

IC IARGm3: POSITIVE LARGE ARGUMENT; TEE SOLUTION DAMPING FAST
C



T1AIBS (IS)
Tl:SQRT(Ti)I
IS14-SQRT (TI)

XS32=T1*T1*T1
ZS=CMPLI(IS .0.)
CALL AIBI(ZS,AIi,AIIP,BI1,BIiP)
GO TO (100,200,300)IARG

100 CONTINUE
1S3=IS*XS*IS
T2=-1./(PI*XS)*(1.+2./XS3+40./(XS3*XS3))
T3=1./(PI*XS*XS)*(1.+8./XS3+280./(1S3*XS3))
EI-CMPLI(T2 .0.)
HIP=CNPLI(T3 ,0.)
GIuBIl-HI

GIPwBIlP-HIP

RETURN3
200 CONTINUE

IF(JBS(lS).NE.O.)GO TO 250

GImCMPLI(0 .204975642478 .0.)I
GIP*CMPLI(O. 149429452449, 0.)

E1u2.*GI

RIP-2.*GIP
RETURN

250 CONTINUE
C
C THE INTEGRAL IS CALCULATED USING THE DEFINITE INTEGRAL 0 TO AUG

C AND THEN ADD UP THE REMAINDER FROM THE REST OF THE INTEGRAL1

C USING ASYMPTOTIC EVALUATION3
C

AUGw4.

IF(IS.GE.3. )AUG-6.I
IF(XS.LE.-3.)AUG*2.
AUG2=AUQ*AUG

DELTwO .01
NNT-AUG/DELT+ 1
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DO 280 I-1,NNTI IT-(I-1)*DELT
ARG=-IT*ZT*XT/3 . XS*XT
Ti-EXP (ARG)
AGT(I)=EXP(ARG)
AGP (I) u17*EIP (ARG)

280 CONTINUE
Nl=(NNT-1) /2
T2=0.I T3=0.
DO 290 Jwl,N1
31=2*3

T2=T2+(AGT(J1IM+4.*AGT(Ji)+AGT(JIP))*DELT/(3AtPI)
T3=T3+(AGP(JIM)+4.*AGP(J1)+AGP(JIP))*DELT/(3.*PI)

290 CONTINUE
T4-XS*AUG-AUG*IU02/3.

T6nEXP(74)
XSITul. /(IS-AUG2)
IST2aISTT*XSTT
IST4=XST2*XST2
T7ET6*ISTT* (-1. +2. *AUG*XST2- (2. *XS+ 10. *AUG2) *1574)/PIP
T2aT2+TT
T8=T8*XST2*( .-6. *IUG*XST2+(8.*XS+52. *AUG2)*XST4)/PI
T3=T3+4.*T7'+T8I ~HIuCMPLI(T2 ,0.)
HIP=CIIPLI(T3,0.)
GIuBI1-U

GIPOBIIP-HIP
RETURN

300 CONTINUE
IS3uIS*1S*IS
T2'ul./(PI.IS).(1.I2./1S3.40./(XS3*XS3))
T3.-l./(PI*XS*1S)*(1.+8./X53+280./(XS3*1S3))

GI=CMPLI(T2 .0.)
GIPwCMPLI(T3,0.)



ARG=2.*1S32/3.
T4=EXP (AUG)
T5=T41 (SQPI*XS14)

T6=T4*XS14/SQPI

HI=CMPLX(T5 .0.)
HIP=CMPLX(T6,0.)
RETURN
END

CCC-------------------------------------------------------------------I
SUBROUTINE FCTI (ID, FCT .1)
COMPLEX FXX(8) ,FX(8) ,CJFCT

DIMENSION XX(8)
DATA PITPI,SML/3.14159266,6.28318531,0.001/
DATA I/3.,71,.,.,.5S

DATA CJ/(0.,l.)/
DATA FX/(0.6729,0.2677),(0.6768,0.2682),(0.T439,0.2549),

1(0.8095,0.2324),(0.873,0.1982),(0.9240,0.1577),(0.9658,0.1073),3

2(0 .9797,0.0828)/
DATA FIX/(0.,0.),(0.5195,0.0025),(0.3366,-0.0665),

1(0.2187,-0.0757), (0.12T,-0.068) ,(0.0838,-0.0506).
2(0.0248,-0.0296), (0.0093,-0.0163)/

IF(X.GT.5.6)GO TO I
IF(X.GT.0.3)GO TO 10

CIDul DIFFRACTION COEFFICIENT Fl

C ID=2 SLOPE DIFFRACTION COEFFICIENT FIS

CHI? SMALL ARGUMENT FORMI
FCT-((1.253,1.263)*SQRT(I)-(0. ,2.)*I-0.6667*X*I)*CEXP(CJ*I)

IF(ID.EQ.2) FCT*2.*CJ*X*I's.-FCT)
RETURN

C!!! LINEAR INTERPOLATION REGION

10 DO 11 N-2,7

11 IF(X.LT.JI(N))0O TO 12
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12 FCT=FII(N)*(Z-XX(N))4FX(N)

IF(ID.EQ.2) FCT-2.*CJ*X*(1.-FCT)

RETURN

CM £ LARGE ARGUNENT FORM

1 IF(ID .EQ .1) FCT=1. .CMPLI(-O.75/1,O.6)/X

IF(ID.EQ.2) FCT=1.+CMPLX(-3.76/I,1.5)/lI RETURN
END
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FUNCTION COMPLETE AIRY
These functions compute values for the Complete Airy functions.

complex function ai ( z )
complex z, aip, bi, bip, z1, z2, z3, z4
call aibi ( z, zi, z2, z3, z4 )
ai = zl

return

entry aip

call aibi ( z, z1, z2, z3, z4 ) I
aip = z2
return

entry bi
call aibi ( z, z1, z2, z3, z4 )
bi = z3 I
return

entry bip I
call aibi ( z, zi, z2, z3, z4 )
bip - z4
return
end

SUBROUTINE AIBI(Z, AIAIP,BI,BIP) U
COMPLEX Z,AI,AIP,BIBIP

IF(CABS(Z).GT.6.)GO TO 12
CALL AIBII(ZAI,AIP,BIBIP)
RETURN

12 CALL AIBI2(ZAIAIPBI,BIP)
RETURN
END
SUBROUTINE AIBIl (ZAI ,AIP ,BI,BIP)

C THIS PROGRAM CALCULATES THE AIRY FUNCTIONS AI(Z),BI(Z),

I94
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C AND THEIR DERIVATIVES AIP(Z),BITP(Z).IC REF. ABRAMOWITZ AND STEGUN, HANDBOOK OF MATHEMATICAL FUNCTIONS.

C FOR CABS(Z) .LE. 6.0 ,A TIYLOR SERIES IS USED.IC ARG(Z) MAY TAKE ANY VALUE. SEE (10.4.2) TO (10.4.6)
COMPLEX ZAII,AIP,BIBIP

COMPLEX*16 F,GI,FPIIGP

DOUBLE PRECISION CC1,CC2

DATA S3,CCI ,CC2/1 .732050808,.355028053887817, .258819403792807

CALL FZGZ(Z,F,GFPJIGP)

AI=CCI*F-CC2*G

AIP=CC1*FP-CC2*GP

BI=S3* (CCI*F.CC2*G)

BIP-S3* (CCI*FP+CC2*GP)I RETURN
END

SUBROUTINE PZGZ(Z.FG,FP,GF)

C THE AUXILIARY FUNCTIONS F(Z)DG(Z),FP(Z),GP(Z) ARE COMPUTED AS IN

C "TABLES OF THE MODIFIED HAIXEL FUNCTIONS OF ORDER ONE-THIRD IND

C OF THEIR DERIVATIVES",COMPUTATION LAB, HARVARD UNIV. PRESS,1945.

COMPLE1*16 FG,FP,GP,Z3,Z3MZD

COMPLEX Z

REAL*8 AMBM,CM,DM,AO,BOCO.DO

REAL ZMBD(6)

INTEGER MAX(S)I DATA ZMBD /6.1, 6.8, 4.8, 4.1, 3.2/
DATA MAX /22, 19, 16, 14, 11/

ZDuO.DO

ZD-Z

BOwl.D0

COwO.6D0
DOwl .DO
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Z3=(ZD**3) /200

Z3K=Z3

ZMAG=CABS (Z)

DO 3 M-1,6

3 IF(ZMAG .LE. ZMBD(M))MADMAX=MAX(M)
F=AO

G=BO

FP=CO

GP=DO

DO 10 M1l,MIDMAX

Th=FLOAT (3*M)

AM=200 DO*AO/TM/ (TM-i)

BM=200 .DO*BO/TMI (TM4I)I
CM=200.DO*COITM/ (TM+2)

DM-200. DO*DO/TM/ (TM-2)

F=F4AM*Z3M

G=G+BM*Z3M

FP=FP+CM*Z3H

GP=GP+DM*Z3M
Z3M=Z3M*Z3

kaOAM
BO=BM

CO=CM

DO-DM

1.0 CONTINUE

GaZD*G

FP= (ZD**2) *FPp
RETURN

END

SUBROUTINE AIBI2(XkIIA IP,BI ,DIP)U
C THIS PROGRAM CALCULATES TOE AIRY FUNCTIONS AI(XI),BI(UX),

C AND THEIR DERIVATIVES AIP(XI),BIP(XX).

C REF. ABRAMOWITZ AND STEGUN, HANDBOOK OF MATHEMATICAL FUNCTIONS.

COMPLEX Z,AIAIP,BIBIP,XX

COMPLEX Z26,ZTBDZT.ZT2,ZT3IZT4,ZTS

COMPLEX CTIA2L2 .EIPI3 ,EIPI ,C ,S
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DATA RTPI ,TWORPI IRTOP IPOF

%. /1.772453851,3.544901702, .797884561, .785398164/
DATA 12L2,EIPI6 DEIPI3

% f(0.,.346573590),(.866025404,.5),(.5,.866025404)/

DATA Cu .069444444/ ,C2/ .037133487/ ,C3/ .037993059/,
% C4/ .057649190/,Cb/ .116099064/U ~DATA D1I- .097222222/,D2/- .0438e6030/,D3/- .042462830/,
%. D4/-.062662163/,D5/-.124105896/

ZTB=(2./3.)*11**1.S

lRG=ATlN2(lIMlG(II) ,REAL(X.I))

I EQN. IF(IBS(IRG).GE.2.1) GO TO 100

ZT:-ZTB
ZT2uZT*ZTI ZT3=ZT2*ZT
ZT4=ZT2*ZT2
ZTSwZT3*ZT2

CT1=CEXP (-ZT) /TWORPI
AI=CT1/Z25* (1-C1/ZT+C2/ZT2-C3/ZT3+C4/ZT4-CS/ZTS)
IIP--CTI*Z25* (1-D1/ZT.D2/ZT2-D3/ZT3+D4/ZT4-DS/ZTS)
IF(ARG.LT.0.)GO TO 20

C EQN. (10.4.66),(10.4.68) WITH UPPER SIGNS.
ZIXX/EIPI3
CT1=ZT.POF-A2L2
BI=EIPI6
BIPl . /EIPI6
GO TO 30I20 ZT=(0.,1.)*ZTB

C EQN. (10.4.66),(10.4.68) WITH LOWER SIGNS.
Z=XX.EIPI3

CT1-ZT+PDF+A2L2
BIu . /EIPI6

30 BIP=EIPI6
30 S-CSIN(CTI)

CUCCOS(CT1)
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Z26=Z** .25
ZT2=ZT*ZTI
ZT3=ZT2*ZT

ZT4=ZT2*ZT2
ZTS=ZT3*ZT2I
BI=BI*RTOP/Z25*(S*(1-C2/ZT2+C4/ZT4)-C* (CI/ZT-C3/ZT3+C5/ZTh))

BIP=BIP*RTOP*Z25* (C*(l-D2/ZT2.D4/ZT4)+S* (Di/ZT-D3/ZT3+DS/ZTS))I

100 RETURNI
10 ZT=(0.,1.)*ZTB

C EQ.(10.4.60),(10.4.62),(10.4.64),(10.4.67)

IF(ARG.LT.0. )ZT=-ZT
Z=-Ix
Z26=Z** .25
ZT2=ZT*ZT3
ZT3=ZT2*ZT
ZT4aZT2*ZT2

ZT5=ZT3*ZT2U
CTI=ZT+POF
S-CSIN(CTI)

CuCCOS(CTI)
II=1. /RTPI/Z25*(S*(l-C2/ZT2+C4/ZT4)-C*(Cl/ZT-C3/ZT3.CS/ZTS))

AIP=-Z25/RTPI*(C* (1-D2/ZT2+D4/ZT4).S* (D1/ZT-D3/ZT3+DS/ZTS))I

BIu . /RTPI/Z25*(C*(1-C2/ZT2.C4/ZT4)+S*(Cl/ZT-C3/ZT3+C5/ZTh))3

BIP.Z25/RTPI* (S* (1-D2/ZT2+D4/ZT4) -C* (DI/ZT-D3/ZT3+DSIZTS))

RETURN
END3

98I


